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? Measurement of mÑ2
− mÑ1

? Measurement of mÑ2
itself

? Extraction of the values of M2, µ, tanβ,...
? Evidence of how the µ-term was generated in the first place

• Most important thing to a theorist: gaugino mass unification

• Want to know this independent of everything else that’s going on with the
supersymmetry breaking Lagrangian (if possible)

• Big job: need a tractable and concrete starting point

Binetruy, Kane, Lykken and BDN , J. Phys. G32 (2006) 129
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“Mirage Pattern”

• Mirage pattern of gaugino masses – a one-parameter family:

M1 : M2 : M3 ' (1 + 0.66α) : (2 + 0.2α) : (6− 1.8α)

• A logical first step

? Easy to understand and visualize
? Interpolates between mSUGRA (α = 0) and AMSB limit (α →∞)
? Motivated by a variety of constructions, including string theory

(heterotic and Type II) as well as “deflected” AMSB
? Disadvantage: Only one-parameter family of models ⇒ not fully general

• All values of α correspond to a unified pattern – the only issue is at which
energy scale they unify

? When α = 0 gaugino masses unify at Mgut ' 2× 1016 GeV
? Other α values give effective unification scale elsewhere (hence “mirage”)
? Example: α = 2 gives M1 ' M2 ' M3 at low-energy scale
? Scale dependent! Coefficients change with scale (here 1 TeV)

Choi & Nilles , JHEP 0704 (2007) 006
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A Quick Derivation of the Mirage Pattern (I)

⇒ High scale: universal and anomaly-induced piece to gaugino masses

Ma (Λuv) = Muniv
a (Λuv) + Manom

a (Λuv) = Mu + g2
a (Λuv)

ba

16π2
Mg

• Gauge couplings continue to unify at the Λuv = Λgut scale

g2
1 (Λuv) = g2

2 (Λuv) = g2
3 (Λuv) = g2

gut '
1
2

• Anomaly piece is proportional to SM beta-function coefficients

ba = −(3Ca −
∑

i

Ci
a) ⇒ {b1, b2, b3} =

{
33
5

, 1,−3
}

• If these are going to be competitive you need Mg
>∼ 30Mu

⇒ Now evolve to electroweak scale using one-loop RGEs

Ma (Λew) = Mu

1− g2
a (Λew)

ba

8π2
ln
(

Λuv

Λew

)1− 1
2

Mg

Mu ln
(

Λuv
Λew

)
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A Quick Derivation of the Mirage Pattern (II)

⇒ Introduce the parameter α = Mg

Mu ln(Λuv/Λew)

Ma (Λew) = Mu

[
1−

(
1− α

2

)
g2

a (Λew)
ba

8π2
ln
(

Λuv

Λew

)]
• Some notable properties of this solution

? If you can engineer Mg ∼ 30Mu then you obtain α ∼ 1
? When α = 2 gaugino masses universal at the electroweak scale
? Take Λew = 1000 GeV, Λuv = Λgut and divide through by M1 (Λew) |α=0

M1 : M2 : M3 = (1.0 + 0.66α) : (1.93 + 0.19α) : (5.87− 1.76α)

⇒ Finding the scale of “mirage unification”: redefine α ≡ Mg

Mu ln(Mpl/Mg)

Ma (Λew) = Mu

{
1− g2

a (Λew)
ba

8π2

[
ln

(
Λuv (Mg/Mpl)

α/2

Λew

)]}

• Effective unification scale is now at

Λmir = Λgut

(
Mg

Mpl

)α/2
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Testing for the Mirage Pattern

⇒ Our goal is to ask how well we can determine α at the LHC using only
actual observations

• Most importantly, can we demonstrate α 6= 0?
• Want to do this independent of any particular model
• Not going to assume reconstruction any sparticle masses
• We will assume we know all other inputs for the Monte Carlo comparison to

data – unrealistic but this is a first step

⇒ Basic idea: use an ensemble of signatures wisely chosen to perform a fit of
Monte Carlo to “data”

• We break the problem into a “base model” specified by the parameters
tanβ, m2

Hu
, m2

Hd

M3, At, Ab, Aτ

mQ1,2, mU1,2, mD1,2, mL1,2, mE1,2

mQ3, mU3, mD3, mL3, mE3


and a value of α which determines the three gaugino masses
(with overall scale set by M3)
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Simulation Methodology: Overview

• Given a model we construct a model line by varying α while keeping the base
model fixed

• For each point we generate data using PYTHIA + PGS4and construct our
signatures

• Analysis is performed using a modification of ROOTgenerated by Baris
Altunkaynak at Northeastern

http://www.atsweb.neu.edu/ialtunkaynak/heptools.html#parvicursor

• How do we determine the value of α? We compare Monte Carlo predictions
for our signatures against the “data”

• For example, we can ask whether we can distinguish the prediction for the
case α = 0 from the data we simulate at α 6= 0
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Interlude: On “Distinguishability”

⇒ We want to distinguish models A and B using the n (counting) signatures Si

• Define a measure in signature space analogous to a chi-squared variable

(∆SAB)2 =
1
n

∑
i

[
SA

i − SB
i

δSAB
i

]2

• Convert to effective cross-sections via σ̄i = Si/L and assuming errors are
purely statistical (

√
N )

(∆SAB)2 =
1
n

∑
i

[
σ̄A

i − σ̄B
i√

σ̄A
i /LA + σ̄B

i /LB

]2

• We always include the Standard Model background so that σ̄i = σ̄susy
i + σ̄sm
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• We always include the Standard Model background so that σ̄i = σ̄susy
i + σ̄sm

• So how big should (∆SAB)2 be to say models A and B are distinguished from
one another?

• LHC Inverse criterion: this number needs to be at least as big as the value
induced by quantum fluctuations Arkani-Hamed et al. , JHEP 0608 (2006) 070
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Towards a Universal Definition of “Distinguishable”

• Effect of fluctuations estimated by comparing the same single model to itself
many times and computing (∆SAA)2

∣∣
95

• But this really depends on the model point and (especially) the signature list
you choose to consider
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Towards a Universal Definition of “Distinguishable”

• Effect of fluctuations estimated by comparing the same single model to itself
many times and computing (∆SAA)2

∣∣
95

• But this really depends on the model point and (especially) the signature list
you choose to consider

• We can obtain an analytic answer valid for any model pair and any signature
list provided

? Fluctuations for each signature are assumed to be uncorrelated
? We assume that our extracted σ̄i are very close to the true cross-section

values σi

? We assume assume the count rates form normal distributions

• Under these assumptions (∆SAB)2 is a randomly-distributed variable with a
probability distribution of

P (∆S2) = n χ2
n,λ(n∆S2)

where χ2
n,λis the non-central chi-squared distribution for n degrees of

freedom
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Non-central Chi-Square Distribution

⇒ (∆SAB)2 distributed according to a non-central chi-square distribution

• The non-centrality parameter λ is given by

λ =
∑

i

(σA
i − σB

i )2

σA
i /LA + σB

i /LB

• Taking λ = 0 gives distribution for (∆SAA)2

• Can now solve analytically for (∆SAA)2
∣∣
p
≡ γn(p) for any confidence level p as

a function of the number of signatures n

• Having (∆SAB)2 > (∆SAA)2
∣∣
95

may be thought of as a necessary condition,
but it is not sufficient to distinguish models A and B

⇒ For two models that truly are different we expect λ 6= 0

⇒ We want to quantify the probability that two truly distinct models undergo a
fluctuation such that their measured (∆SAB)2 is a very low value
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Non-central Chi-Square Distribution & γn(p)
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Our Distinguishability Criterion

⇒ Want the probability for (∆SAB)2 to fluctuate below γn(p) to be less than 5%

P =
∫ ∞

γn(p)

n χ2
n,λ(n∆S2

AB) d(∆S2
AB) =

∫ ∞

nγn(p)

χ2
n,λ(y) dy ≥ 0.95

• Value of this integral decreases monotonically as λ increases

• When P = 0.95 we have found the minimum value λmin(n) for the
non-centrality parameter
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Converting λmin to Signatures

• Any combination of n-parameters yielding λ > λmin(n) will be effective in
demonstrating that the two models are indeed distinct, 95% of the time, with a
confidence level of 95%

• The value of λ is proportional to integrated luminosity

Lmin =
λmin(n)
RAB

with RAB =
∑

i

(RAB)i =
∑

i

(σA
i − σB

i )2

σA
i + σB

i

⇒ All the physics of the specific signature list is contained in RAB!

• This just says given any signature list there is always some minimal luminosity
that will distinguish the models

• Now the goal is clear: choose your signature list so as to maximize RAB, with
as few signatures as possible so as to minimize λmin(n)
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Choosing an Optimal Signature List

• Given a model pair A and B compute the absolute quantity (RAB)i for all of
the possible signatures you can imagine

• Now order them from highest Ri value (smallest Lmin) to smallest Ri value
(largest Lmin) – what fraction of the list should you employ?
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Choosing an Optimal Signature List

• Given a model pair A and B compute the absolute quantity (RAB)i for all of
the possible signatures you can imagine

• Now order them from highest Ri value (smallest Lmin) to smallest Ri value
(largest Lmin) – what fraction of the list should you employ?

• No cheating! Can’t use your best signature N times... (correlations)

• Kitchen sink method is not ideal!

⇒ Take a big hit since λ(n) eventually grows faster than
∑

i Ri

• For any particular pair of models you can optimize this choice

• But once you average over a large ensemble of models the list will now only
be (at best) close to optimal for any model
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Simulation Methodology: Details I

⇒ We created hundreds of model lines by choosing random “base models”
and constructing alpha-lines based off them

• Each line: −0.5 ≤ α ≤ 1.0 for the parameter α in steps of ∆α = 0.05

• A single SM sample was generated, including 5 fb−1 of top, bottom, dijets and
gauge boson production (both single and double production)

⇒ This sample was suitably weighted to be included with each of our
“signal” samples

• For each point along the model-line 100,000 events PYTHIA + PGS4with the
level 1 trigger only

⇒ Typically this is about 5 fb−1 of signal
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Simulation Methodology: Details II

Object Minimum pT Minimum |η|
Photon 20 GeV 2.0
Electron 20 GeV 2.0

Muon 20 GeV 2.0
Tau 20 GeV 2.4
Jet 50 GeV 3.0

Initial object-level cuts to keep an object in the event record

⇒ After object-level cuts we impose event-level cuts

• 6ET > 150 GeV

• Transverse sphericity ST > 0.1

• HT =6ET +
∑

Jets pjet
T > 600 GeV (400 GeV for events with 2 or more leptons)

⇒ Narrowed our ultimate lists down from an initial set of 128 observables

⇒ All histograms were integrated to produce a count
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Signature Lists A & B

• List A is the straw-man: most inclusive possible signature

• Recall: (RAB)i has units of cross-section – goal is to minimize Lmin

Description Min Value Max Value
1 Many

eff = 6ET +
∑

all p
all
T [All events] 1250 GeV End

Signature “List” A
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Description Min Value Max Value
1 Many

eff = 6ET +
∑

all p
all
T [All events] 1250 GeV End

Signature “List” A

• List B is the largest possible (effective) list that has 10% or less correlation
between signatures

• Partitioning of data designed to minimize correlations

Description Min Value Max Value
1 M jets

eff [0 leptons, ≥ 5 jets] 1100 GeV End
2 Many

eff [0 leptons, ≤ 4 jets] 1450 GeV End
3 Many

eff [≥ 1 leptons, ≤ 4 jets] 1550 GeV End
4 pT (Hardest Lepton) [≥ 1, ≥ 5 jets] 150 GeV End
5 M jets

inv [0 leptons, ≤ 4 jets] 0 GeV 850 GeV

Signature “List” B
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Signature List C

• Here we allow as much as 30% correlation between any two signatures

Description Min Value Max Value
Counting Signatures

1 N` [≥ 1 leptons, ≤ 4 jets]

2 N`+`− [M `+`−
inv = MZ ± 5 GeV]

3 NB [≥ 2 B-jets]
[0 leptons, ≤ 4 jets]

4 Many
eff 1000 GeV End

5 M jets
inv 750 GeV End

6 6ET 500 GeV End
[0 leptons, ≥ 5 jets]

7 Many
eff 1250 GeV 3500 GeV

8 rjet [3 jets > 200 GeV] 0.25 1.0
9 pT (4th Hardest Jet) 125 GeV End
10 6ET /Many

eff 0.0 0.25
[≥ 1 leptons, ≥ 5 jets]

11 6ET /Many
eff 0.0 0.25

12 pT (Hardest Lepton) 150 GeV End
13 pT (4th Hardest Jet) 125 GeV End
14 6ET + M jets

eff 1250 GeV End

Signature “List” C



18
Signature List C

Description Min Value Max Value
Counting Signatures

1 N` [≥ 1 leptons, ≤ 4 jets]

2 N`+`− [M`+`−
inv = MZ ± 5 GeV]

3 NB [≥ 2 B-jets]
[0 leptons, ≤ 4 jets]

4 M
any
eff

1000 GeV End

5 M
jets
inv 750 GeV End

6 6ET 500 GeV End
[0 leptons, ≥ 5 jets]

7 M
any
eff

1250 GeV 3500 GeV
8 rjet [3 jets > 200 GeV] 0.25 1.0
9 pT (4th Hardest Jet) 125 GeV End
10 6ET /Many

eff
0.0 0.25

[≥ 1 leptons, ≥ 5 jets]
11 6ET /Many

eff
0.0 0.25

12 pT (Hardest Lepton) 150 GeV End
13 pT (4th Hardest Jet) 125 GeV End

14 6ET + M
jets
eff

1250 GeV End

Signature “List” C

• First appearance of true counting signatures

• These signatures only occasionally helpful (sensitive to presence of spoiler
modes for trilpeton signature)
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Signature List C

Description Min Value Max Value
Counting Signatures

1 N` [≥ 1 leptons, ≤ 4 jets]

2 N`+`− [M`+`−
inv = MZ ± 5 GeV]

3 NB [≥ 2 B-jets]
[0 leptons, ≤ 4 jets]

4 M
any
eff

1000 GeV End

5 M
jets
inv 750 GeV End

6 6ET 500 GeV End
[0 leptons, ≥ 5 jets]

7 M
any
eff

1250 GeV 3500 GeV
8 rjet [3 jets > 200 GeV] 0.25 1.0
9 pT (4th Hardest Jet) 125 GeV End
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11 6ET /Many
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0.0 0.25

12 pT (Hardest Lepton) 150 GeV End
13 pT (4th Hardest Jet) 125 GeV End

14 6ET + M
jets
eff

1250 GeV End

Signature “List” C

• Some signatures designed to detect changes in the softness of decay
produces in cascade decays

• Particularly effective is the ratio rjet ≡
p
jet3
T

+p
jet4
T

p
jet1
T

+p
jet2
T
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Signature List C

Description Min Value Max Value
Counting Signatures

1 N` [≥ 1 leptons, ≤ 4 jets]

2 N`+`− [M`+`−
inv = MZ ± 5 GeV]

3 NB [≥ 2 B-jets]
[0 leptons, ≤ 4 jets]

4 M
any
eff

1000 GeV End

5 M
jets
inv 750 GeV End

6 6ET 500 GeV End
[0 leptons, ≥ 5 jets]

7 M
any
eff

1250 GeV 3500 GeV
8 rjet [3 jets > 200 GeV] 0.25 1.0
9 pT (4th Hardest Jet) 125 GeV End
10 6ET /Many
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0.0 0.25
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0.0 0.25

12 pT (Hardest Lepton) 150 GeV End
13 pT (4th Hardest Jet) 125 GeV End

14 6ET + M
jets
eff

1250 GeV End

Signature “List” C

• Some items are normalized – but generally normalization not helpful in
reducing correlations (may be very helpful in reducing systematic
uncertainties)
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Two Benchmarks Models

• Model A

? Based on heterotic string theory
? Dilaton stabilized with non-perturbative

corrections to the Kähler potential
? Stabilization mechanism causes

Mg ∼ 30Mu

? Scalar masses generally universal
? Absolute prediction: α >∼ 0.12

• Model B

? Based on Type II string theory
? Includes internal fluxes for moduli

stabilization
? Large warping in compact space

produces Mg ∼ 30Mu

? AMSB plays a large role in all soft
terms

? Basic model predicts α ' 1

Choi, Falkowsi, Nilles, Olechowski , NPB 718 (2005) 113
Falkowski, Lebedev, Mambrini , JHEP 0511 (2005) 034

M.K. Gaillard and BDN , Int. J. Mod. Phys. A22 (2007) 1451
Point A B
α 0.3 1.0
tan β 10 10
Λmir 2.0× 1014 1.5× 109

M1 198.7 851.6
M2 172.1 553.3
M3 154.6 339.1
At 193.0 1309
Ab 205.3 1084
Aτ 188.4 1248
m2

Q3
(1507)2 (430.9)2

m2
U3

(1504)2 (610.3)2

m2
D3

(1505)2 (352.2)2

m2
L3

(1503)2 (381.6)2

m2
E3

(1502)2 (407.9)2

m2
Q1,2

(1508)2 (208.4)2

m2
U1,2

(1506)2 (302.7)2

m2
D1,2

(1505)2 (347.0)2

m2
L1,2

(1503)2 (379.8)2

m2
E1,2

(1502)2 (404.5)2

m2
Hu

(1500)2 (752.0)2

m2
Hd

(1503)2 (388.7)2

All values in GeV
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Physical Spectra for Benchmark Models

Parameter Point A Point B Parameter Point A Point B
mÑ1

85.5 338.7 mt̃1
844.7 379.9

mÑ2
147.9 440.2 mt̃2

1232 739.1
mÑ3

485.3 622.8 mc̃L
, mũL

1518 811.7
mÑ4

494.0 634.3 mc̃R
, mũR

1520 793.3
mC̃±1

147.7 440.1 mb̃1
1224 676.8

mC̃±2
494.9 635.0 mb̃2

1507 782.4

mg̃ 510.0 818.0 ms̃L
, md̃L

1520 815.4
µ 476.1 625.2 ms̃R

, md̃R
1520 793.5

mh 115.2 119.5 mτ̃1 1487 500.4
mA 1557 807.4 mτ̃2 1495 540.4
mH0 1557 806.8 mµ̃L

, mẽL
1500 545.1

mH± 1559 811.1 mµ̃R
, mẽR

1501 514.6

Low Energy Physical Masses for Benchmark Points
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Benchmark Results

Model A Model B
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Ensemble of models

⇒ We will test the ability of our list to distinguish points along model lines for
500 randomly-generated base models
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Ensemble of models

⇒ Top plot compares α = 0 to α = 0.1; bottom plot compares α = 0 to α = 0.3
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Conclusions

• LHC v2.0 will be about synthesis

• Rather than fit to models can we fit to characteristics?

• Yes, at least in this (artificial) first step

• Gaugino mass non-universality at >∼ 20% can be measured within 1-2
years at the LHC

• Bigger is not necessarily better when using LHC observations!

• Is there a limit to how much useful information we can extract from the LHC?


